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INTRODUCTION

Army applications of electro-optical (EO) systems, especially high-energy
lasers (HEL) and long-range laser and broadband systems, such as laser
designators, range fingers, image intensifier and infrared imagers,
remote wind sensors, etc., require a knowledge of low absorption coeffi-
cients of atmospheric constituents. An absolute measure of the weak
absorptions (a few percent per kilometer or less) is difficult to obtain
even with very sophisticated long-path absorption cells. Sometimes the
concentration of weak absorbers can be increased to make measurement of
the absorption coefficients easier [1]. However, self-broadening of
gases [2] and even condensation, as in the case of water vapor [3], can
severely limit how much the absorber concentration can be increased.
Once an absolute measure of weak absorbers is obtained by using long-
path absorption cells, spectrophones can be used to complement these
measurements [4]. The basic problem then is obtaining the initial very
accurate absolute measurement of the weak absorbers of interest and
doing so in a timely fashion.

The Atmospheric Sciences Laboratory (ASL) has already made substantial
improvements in its long-path absorption cell capabilities. Data acqui-
sition and analysis have been automated [5,6], and techniques for re-
ducing long-term system drift have been developed [7,8]. This report
discusses system developments which improve the accuracy and fully
automate long-path absorption cell measurements. In fact, only one
person is now required to perform long-path absorption cell experiments.
The savings in experimental man-hours as well as the improvement in
measurement accuracy are quite significant.

BASIC CELL OPERATION

A detailed description of an absorption cell experiment is given else-
where [9] as is the improved technique, path differencing [7], for
obtaining data from long-path absorption cells by utilizing rapid changes
in cell pathlength to minimize long-term drift error. The basic prin-
ciples and procedures are described briefly here. Figure 1 gives the
basic setup for a long-path absorption cell experiment using conventional
White-type optics [10?. A source of radiation, in this case a laser, is
divided into two portions by a beam splitter B. One portion goes to a
reference detector system R. The other portion of the beam enters the
absorption cell through a window W; makes multiple reflections from
spherically concave mirrors M;, M,, and M3; exits the cell through
another window; and then goes to a sample detector system S. The path-
length in the cell can be determined by counting the number of reflection
spot images in the multipath on mirror M, as seen through an observation
window OW. A short multipath (1-spot) and a long multipath (N-spot)
(Figure 2) are obtained by adjusting only mirror M; once mirrors M; and
M, are appropriately positioned as described later.




ABSORPTION CELL
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Figure 1. Conventional "White-type" absorption cell experimental setup:
B, beam splitter; W, cell windows; OW, observation window;
R and S, reference and sample detector systems; M,, ﬁz, and
M;, spherically concave cell mirrors; and L, separation
distance between cell mirrors.

M2
® o)
I-SPOT N-SPOT
MULTIPATH MULTIPATH

Figure 2. Views of mirror M, as seen from the observation window OW for
a 1-spot (left) and an N-spot (right) multipath; numbered
circles, images of laser source on mirror surface; circle
with central dot, laser beam entering cell; and circle with
"X," laser beam exiting cell.
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Absorption coefficients of gases are measured by using a path differenc-
ing technique of rapidly taking reference and sample detector signal
data for short 1-spot and long N-spot multipaths. Basically, absolute
cell transmittance values for the optical path difference between an
N-spot and 1-spot multipath are obtained by taking short-term time
averaged ratios of relative transmittances (sample divided by reference
detector signals) for the N-spot and 1-spot multipaths. The cell trans-
mittance values obtained contain mirror reflectance loss and gaseous
absorption contributions. Two such cell transmittance values are needed
to obtain the absorption coefficient for a specific gas--one for a cell
atmosphere with the absorbing gas and one without the absorbing gas. To
obtain good accuracy in low absorption coefficient measurements, long-
term drift error which plagues long-path absorption cells must be reduced.
Path differencing which nearly eliminates long-term drift error requires
rapid changes in cell pathlength, including precision beam positioning.
Exact repositioning of the beams formed on mirror surfaces is essential
in reducing long-term system drift. Long-path absorption cell optical
systems designed to obtain maximum output beam stability by use of
compensating optics [11] do so at the expense of mirror reflection loss
reproducibility because the systematic cancelation of beam wander by the
optical system inherently precludes the checking of exact beam position-
ing on the mirror surfaces.

CELL MIRROR ADJUSTMENT

A description of how the conventional White-type cell mirrors are mounted
in a long-path cell is required before their adjustment is discussed.
The optics of the ASL 21-m stainless steel absorption cell will be used
here and throughout this report as a representative example of a long-
path cell optical system. The mirror holders and mechanism for attach-
ment to the 21-m cell are adaptations of the mirror system used in a

2-m stainless steel cell purchased from Boller-Chivens (Contract No.
DAADO7-71-C-0254). Figure 3 illustrates the basic components of the
21-m cell system. The mounting rings (one in each end of the cell),
which support the cell mirror holders and mirrors, are secured to the
cell wall by a set of pressure plates and bolts. Each mirror holder is
attached to the mounting ring on two large threaded bolts and secured by
pairs of nuts, which makes possible positioning of the mirror holders
along the length of the cell.

The mirror holders are more complex. They consist of three parts which
are connected together (the first to the second and the second to the
third) by two sets of spring-loaded flexures. These flexures allow
rotation of the mirror-holding portion of the mirror holder about the
vertical and horizontal axes of the mounting ring by moving two pressure
rods in or out along the length of the cell. The two-mirror-end pressure
rods are linear motion feedthroughs which push against contact plates

and are attached to the two-mirror end flange of the cell by a flanged
vacuum bellows. This allows the mirror holders to be adjusted from out-
side the evacuable cell. The single-mirror-end pressure rods are
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threaded into the mounting portion of the mirror holder and are initially
positioned inside the cell. Additional adjustment of the single mirror
is not needed.

The optical system for a conventional White-type absorption cell consists
of three spherically concave mirrors, one at one end and two at the other
end of an absorption cell as in Figure 1. The radii of curvature of all
three mirrors and the separations between the single mirror and either

of the two mirrors at the opposite end of the cell are all of equal
length L. This forms a beam conserving system. The f-number of the
entrance beam into the cell is adjusted, by a pair of concave mirrors
placed between the laser and the beam splitter in Figure 1, to focus

the beam in the plane of mirror M, and to irradiate a Targe portion of
the mirror M;. Mirror M; focuses the beam onto mirror M,. The reflected
beam diverges to fill a large portion of mirror M; and then refocuses in
the plane of mirror M, as it passes out of the absorption cell.

The above optical configuration does not give the besw beam conservation.
Focusing on the surface of mirror M, can greatly accentuate the effects

of mirror imperfections such as a speck of dust or small pit in terms of
mirror reflection Josses and reproducibility. To avoid such degradation,

a collimated beam a few millimeters in diameter is introduced into the cell.
Mirror M; focuses the beam midway along the length of the cell, and mirror
M, sends a collimated beam to mirror M3 which in turn focuses the beam mid-
way along the length of the cell. The cell output beam (circle with "X")
thus becomes a diverging beam of the same diameter as the input beam (circle
with dot) upon leaving the cell. This configuration limits the maximum
obtainable pathlength of the cell because the spots on mirror M, are not
focused to a small diameter; but no beams are focused on mirror surfaces,
which results in far better beam conservation [7].

The initial positioning of mirror M, with respect to mirrors M; and M,
is important. To begin, the input beam has its f-number adjusted as in
the first case above, so that the input beam is focused inside the
absorption cell just off the input window upper right edge of mirror M,
and in the plane of its reflecting surface as shown in Figure 2. The
diverging beam from this focal point is then centered on the surface of
mirror M;. Mirror M is adjusted to focus the reflected beam directly
below the output window upper Teft edge of mirror M,, again shown by
spot T in Figure 2. If the beam does not focus on the surface of mirror
M,, then the separation distance between mirrors M; and M, is not equal
to their radii of curvature. Mirror M; must be repositioned and the
above procedure repeated until the beam from mirror M; focuses at the
surface of mirror M,. The diverging beam from the surface of mirror M,
is then centered on the surface of mirror M3 by adjusting mirror M, about
its horizontal and vertical axes. Mirror M; may need to be moved closer
to or farther from mirror M, if its return beam does not also focus at
the surface of mirror M,. This adjustment maximizes the obtainable
pathlength and minimizes the chance of beam clipping inside the absorp-
tion cell. This is true whether the input beam is focused in the plane
of mirror M, or a collimated input beam is used.

7
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After initial positioning of the cell mirrors, the absorption cell can

be sealed and used for measurements. To obtain maximum pathlength, the
collimated input beam is positioned as close to the upper right edge of
mirror M, as possible without causing clipping and is also centered in
the middle of mirror M;. The adjustment of mirror M; is critical for
obtaining maximum pathlength and allowing rapid changes of the pathlength
from 1- to N-spot multipaths with only mirror M3. The spot 1 in Figure

2 is positioned so that it is centered directly below the left edge of
mirror M, and an equal distance below the horizontal optical axis of
mirror M, as the exit spot with the "X" is above the axis.  [The latter
adjustment is performed in conjunction with vertical adjustments of
mirror M3. The 1-spot multipath output beam can be centered on the
sample detector by adjusting mirror M;. If horizontal adjustment of

the mirror M; does not produce a long N-spot multipath output beam which
is centered vertically on the sample detector system, the spot 1 on
mirror M, must be appropriately raised or lowered by adjusting mirror M,
with corresponding vertical adjustment of mirror M; until both the 1-spot
and N-spot outputs are centered on the sample detector.

In practice, the multipath outputs must be repositioned horizontally and
vertically to within 1 mm for a 1-spot to 37-spot path difference. This
path difference represents a pathlength of 1,512 m for the 21-m absorp-
tion cell (i.e., 2(N-1)L). This puts restrictions on how precise the
smallest adjustment of the linear feedthrough pressure rods must be.

The contact points of the pressure rods and mirror holdars are 114 mm
from the corresponding axis of rotation. A small angular rotation of
mirror M3 will cause a corresponding angular offset of the output beam
of twice the rotation angle for each reflection from mirror M; or

2[(No. of spots + 1)/2] = No. of spots + 1. Hence, to obtain 1 mm
repositioning error for a 37-spot output requires a linear motion error
(xg of the pressure rods of

1
38 $1|2 mmg - 22 : gm nng

or x = 0.000743 mm or 0.143um. In addition, to be able to rapidly

change pathlengths between 1- and N-spot mutlipaths requires the movement
of the output beam for the 1-spot multipath (makes only one reflection
from mirror M;) a distance of 279 mm in the plane of mirror M, to the
spot 2 position in a 37-spct multipath. The corresponding linear motion
(y) of the pressure rod controlling the vertical axis rotation is

( ) - (279 mm )
< (Il% mm) (27,000 mm)
ory = 0.757 mm.
Initially, the pressure rods were adjusted by using bakeable linear motion
feedthroughs Ultek (Perkin Elmer) Model 282-6200 with 1.57 thread/mm
micrometer spindle drive and accuracy of 0.127 mm including backlash.
To meet the requirement y of rapidly changing pathlength was trivial;

8
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a little over one revolution of the spindle was necessary. Meeting the
requirement of rapidly obtaining the repositioning of the output for a
37-spot multipath was nearly impossible because the magnitude of the
repositioning error of the micrometer was about one thousand times that
required to meet the x repositioning demands. Two major problems were
inherent in the system, excluding the minor problem of gear backlash.
First, the torque required to obtain the drive accuracy needed was too
small for direct manual micrometer operation; and second, the drive
controls for the system were at one end of the 21-m cell, whereas the
cell output had to be viewed from the opposite end.

NEW ADJUSTMENT CONTROLS

Both of the above problems have been eliminated through use of a new
drive gear design and remote selsyn (or synchronous) motors; and yet, the
ability to rapidly change pathlengths between 1- and 37-spot multipaths
was retained. First to be addressed is the problem of spindle torque.
Several system components were added to the end of .the cell to allow
control of the pressure rods from outside a 20 cm thick heating shell
which is around the entire cell for bakeout and temperature control
purposes. These changes are depicted in Figure 4. A 1-1/4-cm thick
aluminum base plate was offset from the cell's two-mirror end flange by
several 2-1/2-cm diameter bolts. This plate was used to rigidly hold

all gears required to make fine adjustments of the four pressure rods.
The linear motion feedthroughs were used but without the spindle attached.
An extension rod was threaded into the end of the pressure rod instead.

A Starrett micrometer Model 262RL with 1.57 thread/mm was attached to

the end of the extension rod and mounted to the outside of the aluminum
plate. The operation of the micrometer was altered. The spindle was
secured to the drive rod by tightening the end nut after the rachet

was removed. The allen bolt which screws into the guide slot in the
drive rod was removed to allow the drive rod to rotate freely in the
mounting sleeve when the spindle-drive rod unit (which includes the
spindle attached to the drive rod) is threaded onto it. The result is a
micrometer drive which, when the mounting sleeve is rotated, a nonrotat-
ing drive of the spindle-drive rod is obtained with only micrometer drive
thread slop. Even this problem was eliminated by spring loading the
pressure rod extension against the linear motion feedthrough sleeve.

The problem of the small torque required to fine position the micrometer
drive was alleviated by a precision worm gear operated 25:1 reduction
gear mounted directly to the aluminum plate and secured to the Starrett
micrometer sleeve. Again, no rotation slop of the reduction gear was
encountered because the whole drive mechanism is spring loaded against
the Tinear motion feedthrough sleeve. There is a little slop in the

worm gear, but no corresponding linear motion of the pressure rod results.
With this new drive gear design a 1-degree rotation of the worm gear
results in a pressure rod drive of 0.0706um, which is quite adequate for
the precision repositioning of the long-path output beam.
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The problem of remote control will now be addressed. Basically a selsyn
transmitter and receiver are used to obtain 1:1 remote drive of the worm
gear on the lew-torque micrumeter drive system (Figure 5). The selsyn
transmitters are controlled by a 7-cm diameter dial graduated in degrees.
The transmitters are located at the single-mirror end of the absorption
cell where the cell output beam can be adjusted and observed simulta-
neously. The procedure for aligning and changing cell pathlengths will
be discussed later, but the mechanical requirements for rapid remote
changes between a long and short multipath will be discussed now. For
changing from a 1- to a 37-spot multipath in the 21-m cell, the pressure
rod must be driven 0.757 mm or 29.8 revolutions of the worm gear control
ling rotation of mirror M; about its vertical axis. This is impractical
for rapid pathlength changes. Two step-up gears are used to alleviate
this system operation problem. First, a 1:4.75 step-up gear is used
between the worm gear and the selsyn receiver to reduce the fine adjust-
ment of the remote control of the linear pressure rod drive to 0.318um
per degree rotation of the selsyn transmitter dial. Obtaining the
required 0.143um linear drive precision is still routinely possible.
Next a coarse adjustment dial is attached to the selsyn transmitter fine
adjustment dial by a 1:5 step-up gear. As a result, only a little over
one revolution of the coarse adjustment dial is required to make the 1-
to 37-spot multipath change since the total gear step-up over the worm
gear drive is 1:23.75. By use of this arrangement, both remote beam
positioning and rapid pathlength change requirements are satisfied.

LASER ALIGNMENT

The alignment of any optical system containing light sources is greatly
facilitated when the sources are of visible wavelengths. This is espe-
cially true for the precision alignment required to perform long-path
absorption cell experiments. A cw helium-neon (He-Ne) laser is usually
used to obtain the optical system alignment required. The light source
of interest, which in the case of most EQ and HEL systems is in the
infrared and hence is invisible to the naked eye, is then made to propa-
gate colinear with the He-Ne laser.

A detailed setup of an experiment using a 21-m stainless steel White cell
and a line tunable pulsed deuterium fluoride (DF) laser source (Figure 6)
will be used to illustrate the types of problems encountered in making
long-path absorption cell measurements [9]. A Lumonics Model TEA-201
pulsed (0.3 Hz), line tunable, DF laser is used which has an unstable
resonator front reflector and a grating back reflector for line selection.
The resulting output is donut-shaped in the near field and has a central
maximum diffraction ring pattern in the far field (25 m away) where the
beam is collected by a spherically concave mirror CM;. The He-Ne
alignment laser is made colinear with the DF laser by use of several

flat mirrors M and one mirror M' with a 1-cm diameter hole drilled
through the center to allow the He-Ne beam to pass through. The donut-
shaped DF beam with an outside diameter of 4 cm and inside diameter of

2 cm is centered on mirror M' about the central hole by using a sheet of
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Figure 6. Experimental setup for an experiment using a DF laser

source and the ASL 21-m absorption cell: He-Ne align-
ment laser with adjustment mirrors M; L, divergence
matching and focusing lenses; M', special mirror with
central hole; spectrum analyzer; CM; and CM,, collec-
tion and collimating spherically concave mirrors;

B, 2-mm thick calcium fluoride beam splitter; F, Teflon
diffuse transmittance filters; A, detector apertures;
and ID and 0D, input and output indium antimonide
detectors, respectively.
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high sensitivity Edmund Scientific Company liquid crystal. The mode
quality of the DF laser was checked by focusing the 4-cm diameter near-
field beam with a calcium fluoride lens L to a few millimeters in diam-
eter and observing the focused beam on the liquid crystal. The laser
front reflector and grating were adjusted to yield a donut-shaped pattern
of uniform heating. The wavelength of the DF laser was checked by insert-
ing a spectrum analyzer into the beam as depicted in the dashed box.

A 5-mm diameter collimated DF laser beam was obtained by collecting the
central maximum and first ring of the far-field DF diffraction pattern
with a 4-cm diameter aperture at mirror CM;. CM, and CM, are both spher-
ically concave mirrors with focal lengths of 160 and 20 cm, respectively.
They are positioned on a 2-m optical bench approximately 180 cm apart

and only slightly off-axis to the DF beam to minimize aberration. By
appropriate adjustment of the separation between CM; and CM,, a 5-mm
diameter collimated DF laser beam was obtained. The beam quality was
checked by propagating the DF beam the length of the 21-m cell outside
the cell and observing its size with the sheet of liquid crystal.

The divergence of the DF and the He-Ne alignment laser was matched by
inserting a beam telescope in the He-Ne beam before the two beams were
combined. By adjustment of the beam telescope focus, the He-Ne beam was
made as nearly collimated as possible for the separation between mirrors
CM; and CM,, which gives a collimated DF beam. Several rings of an He-Ne
diffraction pattern were collected by mirror CM, in this configuration.
Two 1-cm diameter apertures were placed in the beam after reflections
from CM, and from the first mirror M in the collection optics. The He-Ne
diffraction pattern was centered on each of these apertures to ensure
uniform repositioning of the cell input beam on a routine basis. The
beam splitter used (B) is a 2-mm thick calcium fluoride flat which causes
minimal separation of the He-Ne and DF laser optical axes due to wave-
length dependent difference in their refraction by the optical flat. It
is best to use a flat with one antireflection coated side to obtain only
one reflected (in this case a DF laser) beam which goes to the input
detector ID of the reference detector system and also to reduce etalon
interference effects. If an optical wedge is used as a beam splitter,

a matched pair should be inserted into the beam at 45° to the beam and
orthogonal to each other to essentially cancel the wavelength dependent
refraction effects. Care must be taken in selection of an appropriate
beam splitter so as not to alter the colinearity of the He-Ne and DF
lasers because of the exacting requirements of long-path absorption cell
optical alignment.

The two beams which go to the input (ID) and output (0D) detectors of
the reference and sample detector systems are centered on cross hairs on
specially selected diffuse transmittance filters F (diffuse reflectors
could also be used). For the case of DF, Millipore LSWP04700 Teflon
membrane filters have relatively flat forward Tobe diffuse transmittance
and work well as diffusers of DF radiation reducing the effects of beam
jitter and wander. Apertures A are used to select a small enough solid
angle of the diffused laser beam to ensure linear detector response.
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Additionally, the He-Ne alignment beam diffraction pattern can be seen
through the filter, which makes repositioning easier. The colinearity
alignment is performed on the output beams which pass through the cell
output window before they reach the sample diffusing filter. A short
focal length spherically concave mirror is inserted into the beams, and
they are focused onto an activated charcoal block (typically used in
spectrum analyzers). The focused pulsed DF laser beam causes a bright
burn pattern on the charcoal block which is centered on the focused

He-Ne diffraction pattern (slight adjustments of the cell input mirror M
may be needed to ensure a uniform intensity He-Ne diffraction ring pattern
at long cell pathlengths). This adjustment is performed for each change
to the long N-spot multipath and once performed ensures colinearity for
all shorter rultipaths. The pathlength is determined by counting the
number of imace spots which cross the output cell window by observing the
He-Ne laser beam on the membrane filter between the 1- and N-spot multi-
paths. Again a pair of selsyn transmitters and receivers is used to per-
form remote adjustments of the micrometers of mirror M' from the single-
mirror end of the absorption cell (Figure 7).

Finally, the initial positioning of the multipath spot 1 will be dis-
cussed. The spot 1 is centered on the upper right edge of mirror M,, and
its semicircle output beam vertically centered on the horizontal membrane
filter cross hair by adjusting mirror M;. The distance which the spot 1
must be lowered by mirror M; to allow pathlengths to be changed from a 1-
to an N-spot multipath using only vertical axis rotation of mirror M;

is determined as discussed before. Each time a series of data is taken,
the spot 1 is Towered the same distance to ensure exact repositioning of
the spot 1 on mirror M,.

REPRODUCIBILITY OF MEASUREMENTS

The elaborate alignment procedures and techniques to decrease the time
required to change cell pathlengths are used to obtain very accurate
absorption coefficient measurements with the path differencing technique.
Of paramount importance to the success of path differencing is obtaining
a short-term time average of the cell mirror reflectance loss for the
path difference between a 1- and N-spot multipath. Data were taken over
a 2-month time interval on 26 DF laser lines ranging from P, ((2) at
3.5um to P3_»(11) at 4.0um for a reference gas filled cell of 760 torr

of an 80/20 mixture of N,/0, which is essentially nonabsorbing except
near 4.0um. The transmittance values for a 1.512 km path difference
between a 1- and 37-spot multipath ranged from 0.11 to 0.17. Three sets
of short-term path differencing time averages were taken for all 26 DF
laser lines separated by a few weeks. The short-term time averages
exhibited typically less than 2% error. for eight path differences values.
The Tong-term drift error was typically around 1/2% for the three data
sets, which indicates very little systematic error. If a large number
of short-term time averages are taken for a single laser line, the long-
term reflectance loss may contain less than 1/2% error. Even with the
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1/2% transmittance measurement accuracy for a 1.512 km path difference,
absorptions of a few percent per kilometer have already been made [12].

CONCLUSION

Several improvements have been made in long-path absorption cell measure-
ment capabilities which enable a single person to operate a 21-m White
cell and obtain state-of-the-art measurement accuracy. Among the improve-
ments are the low-torque linear drives for vacuum feedthrough pressure
rods, remote operation for cell mirror adjustment and laser alignment
using selsyn transmitters and receivers, and a variety of detection and
alignment techniques. These improvements have extended the capabilities
of long-path absorption cells, so that timely measurements of low absorp-
tion coefficients such as the water vapor continuum at room temperature
between 3.5 and 4.0um are now routine. Some of the techniques discussed
may also be very useful in other measurement fields.
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